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Abstract

We study the corner-to-corner resistance of an M × N resistor network with
resistors r and s in the two spatial directions and obtain an asymptotic expansion
of its exact expression for large M and N. For M = N, r = s = 1, our result is

RN×N = 4

π
log N + 0.077 318 +

0.266 070

N2
− 0.534 779

N4
+ O

(
1

N6

)
.

PACS numbers: 01.55.+b, 02.10.Yn

1. Introduction

A classic problem in the theory of electric circuits is the computation of the resistance between
two nodes in a resistor network. Formulated by Kirchhoff [1] more than 160 years ago, the
problem has been studied by numerous authors over many years (see, for example, [2, 3]).
Kirchhoff explored the graph-theoretical aspect of the algebraic formulation and obtained the
two-point resistance in terms of two-rooted spanning forests and spanning trees. But the
formulation, while elegant, does not provide sufficient physical insights. Past studies have
instead focused on infinite networks for which analysis can be carried to fruition [4].

The computation of the asymptotic expansion of the corner-to-corner resistance of a
rectangular resistor network has been of interest for some time, as its value provides a lower
bound to the resistance of compact percolation clusters in the Domany–Kinzel model of a
directed percolation [5]. The corner-to-corner resistance has been studied by one of us (JWE)
numerically using the method of a differential approximant [6] together with a Neville table
analysis [7].

Recently, one of us (FYW) has revisited the two-point resistance problem [8] and deduced
a closed-form expression for the resistance between arbitrary two nodes for finite networks.
However, the exact expression obtained in [8] is in the form of a double summation whose
mathematical and physical contents are not immediately apparent. In this paper, we take a
closer look at this summation formula and obtain its asymptotic expansion for large lattices.

1751-8113/09/025205+10$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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Figure 1. An M × N resistor network.

The organization of this paper is as follows. In section 2 we recall the expression of
the corner-to-corner resistance in an M × N resistor network obtained in [8] and reduce it
to a form more manageable for our purposes. One of the two summations in the resistance
expression is carried out in section 3 by using a summation identity which we derive. The
resulting expression is written in the form of a dominant term plus a correction. Asymptotic
expansions of the dominant and correction terms are obtained in sections 4 and 5, and we
summarize the results in section 6. We also show that the exact expression of the asymptotic
expansion is in agreement with those determined numerically [7].

2. Formulation of the summation formula

Consider a rectangular M × N network of resistors with resistances r and s on edges of the
network in the respective horizontal and vertical directions. For definiteness, we consider
both M,N even, and expect the asymptotic expansion to be independent of this choice. The
example of an M = 6, N = 4 network is shown in figure 1.

Using equation (37) of [8], the resistance between opposite corner nodes (0, 0) and
(M − 1, N − 1) of the network is

R{M×N}(r, s) = r(M − 1)

N
+

s(N − 1)

M

+
2

MN

M−1∑
m=1

N−1∑
n=1

[
cos

(
1
2θm

)
cos

(
1
2φn

) − cos
(
M − 1

2

)
θm cos

(
N − 1

2

)
φn

]2

r−1(1 − cos θm) + s−1(1 − cos φn)
,

(1)

where θm = mπ/M,φn = nπ/N. Rearranging the numerator in the summand, (1) becomes

RM×N(r, s) = r(M − 1)

N
+

s(N − 1)

M

+
8

MN

M−1∑
m=1

N−1∑
n=1 (m+n odd)

cos2(θm/2) cos2(φn/2)

r−1(1 − cos θm) + s−1(1 − cos φn)
. (2)

There are two possibilities for the restriction m + n = odd to hold, namely,

m = 2p − 1, n = 2q, p = 1, 2, . . . ,M/2, q = 1, 2, . . . , N/2,

n = 2p − 1,m = 2q, p = 1, 2, . . . , N/2, q = 1, 2, . . . , M/2.
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Splitting the sum into two parts accordingly and introducing the notation

Aq = qπ

N
, Bp =

(
p − 1

2

)
π

M
,

we obtain

RM×N(r, s) = (rs)
1
2 [RM×N(r/s) + RN×M(s/r)], (3)

where

RM×N(ρ) =
√

ρ(M − 1)

N
+

4
√

ρ

MN

M/2∑
p=1

N/2∑
q=1

[
cos2 Aq(1 + ρ sin2 Aq)

ρ sin2 Aq + sin2 Bp

− cos2 Aq

]
. (4)

Sums of the term cos2 Aq can be carried out using the identity

N/2∑
q=1

cos2
(qπ

N

)
= N

4
− 1

2
. (5)

This yields

RM×N(ρ) = √
ρ

(
M

N
− 1

2

)
+ SM×N(ρ)

and

RM×N(r, s) = √
rs

[√
ρ

(
M

N
− 1

2

)
+

1√
ρ

(
N

M
− 1

2

)
+ SM×N(ρ) + SN×M(1/ρ)

]
, (6)

where

SM×N(ρ) = 4
√

ρ

N

N/2∑
q=1

(cos2 Aq)(1 + ρ sin2 Aq)Sq,M,N(ρ) (7)

with

Sq,M,N(ρ) = 1

M

M/2∑
p=1

[ρ sin2 Aq + sin2 Bp]−1

= 1

M

(M/2)−1∑
k=0

[
ρ sin2 Aq + sin2

((
k + 1

2

)
π

M

)]−1

. (8)

3. Evaluation of Sq, M , N (ρ)

It is tempting to evaluate the summation (8) by using the Euler–Maclaurin summation formula.
But as shown in the appendix the Euler–Maclaurin summation is inadequate since it does not
determine an error term which cannot be ignored. We proceed here to evaluate Sq,M,N(ρ) by
using a summation identity which we state as a lemma:

Lemma.

(M/2)−1∑
k=0

1

ρ sin2 Aq + sin2
[(

k + 1
2

)
π
M

] = R(y∗) ≡ M tanh(πy∗)

2
√

ρ sin Aq

√
1 + ρ sin2 Aq

, (9)

where M = even and y∗ = y∗
q,M,N (ρ) is defined by

sinh
πy∗

M
= √

ρ sin Aq. (10)

3
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Figure 2. Contour of integration C in (11). Solid circles denote simple poles enclosed by C.

Proof. Consider the contour integral

Jq,M,N(ρ) = 1

2π i

∮
C

π tan(πz) dz

sin2
(

πz
M

)
+ ρ sin2 Aq

, (11)

where the contour C consists of the lines

x = M

2
, y = −∞, y = ∞ (12)

and the imaginary axis x = 0 with two half circles of radii ε → 0 around the two points
z = ±iy∗ as shown in figure 2. The contour encloses M

2 + 2 simple poles of the integrand at
z = ±iy∗ and z = 1

2 , 3
2 , . . . , M−1

2 . The residue is R(y∗) at the simple poles on the y-axis and

−[
ρ sin2 Aq + sin2

(
k + 1

2

)
π
M

]−1
at z = k + 1

2 , k = 0, 1, . . . .

The integration along the contour C vanishes on the lines y = ±∞ and on the straight line
portions of x = 0, M

2 since the integrand is odd in y. Hence the contour integral is nonzero
only on the two half circles. The integrand is odd in z so that the integral along the lower half
circle is equal to the integral in the anti-clockwise direction along the reflection of the upper
half circle in the y-axis. The integral Jq,M,N(ρ) along the contour C may therefore be obtained
by integrating round a circle centered on iy∗. Thus, by the residue theorem, the residue at iy∗

is equal to the sum of the residues of the M
2 + 2 simple poles enclosed by C, hence

R(y∗) = 2R(y∗) −
(M/2)−1∑

k=0

1

sin2
[(

k + 1
2

)
π
M

]
+ ρ sin2 Aq

, (13)

which yields (9). �

The substitution of (9) into (8) and (7) now yields

Sq,M,N(ρ) = tanh(πy∗)

2
√

ρ sin Aq

√
1 + ρ sin2 Aq

(14)

and

SM×N(ρ) =
N/2∑
q=1

Dq,N(ρ) tanh(πy∗), (15)

4
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where

Dq,N(ρ) = 2

N
· cos2 Aq

√
1 + ρ sin2 Aq

sin Aq

. (16)

Anticipating that the dominate contribution of SM×N(ρ) is given by (15) with tanh(πy∗)
replaced by 1 (see the appendix), we rewrite (15) as

SM×N(ρ) = S
(1)
N (ρ) + �M,N(ρ), (17)

where

S
(1)
N (ρ) =

N/2∑
q=1

Dq,N(ρ) (18)

is the dominate contribution, and

�M,N(ρ) =
N/2∑
q=1

�q,M,N(ρ) (19)

is the correction with

�q,M,N(ρ) = Dq,N(ρ)[tanh(πy∗) − 1]. (20)

Numerical evaluation of the difference �q,M,N(1) using tanh(πy∗) given by (9) for
M = N and small values of q shows that it initially decreases with N but ultimately shows a
rapid increase. For q = 1 the turning point is N = 6 and for q = 2 it is N = 12. However
�q,M,N(ρ) for fixed N decreases exponentially with increasing q, a fact which will be seen
to hold for general M and N later (see equation (38)). The sum in (19) therefore converges
rapidly.

The two terms S
(1)
N (ρ) and �M,N(ρ) in (17) are evaluated in the following two sections.

4. Evaluation of S(1)
N (ρ)

The asymptotic form of S
(1)
N (ρ) given by the summation (18) is now deduced using the

Euler–Maclaurin sum formula ([9] equation (5.8.13)) and Bernoulli numbers B2i

r∑
p=1

fp = 1

h

∫ xr

x0

f (x) dx +
1

2
[f (xr) − f (x0)]

+
m∑

i=1

B2ih
2i−1

(2i)!
[f (2i−1)(xr) − f (2i−1)(x0)] + Em(ηm), (21)

where fp is such that fp = f (x0 + ph), the integer r is finite and the error term is given by

Em(ηm) = r
B2m+2h

2m+2

(2m + 2)!
f (2m+2)(ηm), x0 < ηm < xr . (22)

But the direct application of (21) to effect the summation in (18) leads to a divergent integral
so we add and subtract 1/Aq to the summand and use (21) with f (x) given by

f (x) ≡ fρ(x) = cos2 x

sin x

√
1 + ρ sin2 x − 1

x
. (23)

Using x0 = 0, xr = π/2, h = π/N, r = N/2 and since fρ(x) does not diverge at small x, the
error term Em is of the order of O(N−(2m+1) and can be neglected in m → ∞. Denoting by

5
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UN(ρ) and LN(ρ) the respective correction to the integral at the upper and lower limits, we
obtain

S
(1)
N (ρ) = I (ρ) + SN + UN(ρ) + LN(ρ), (24)

where I (ρ) is the integral

I (ρ) = 2

π

∫ π/2

0
fρ(x) dx

= 1

π

[
−1 + 4 log 2 − 2 log π − log(1 + ρ) +

ρ − 1√
ρ

tan−1 √
ρ

]
. (25)

The second term in (24) is the added summation SN , which can be evaluated using the result
([9] chapter 5, problem 26) as

SN = 2

N

N/2∑
q=1

1

Aq

= 2

π

N/2∑
q=1

1

q
= 2

π

(
log

N

2
+ γ +

1

N
−

∞∑
m=1

4mB2m

2mN2m

)
, (26)

where γ = 0.577 215 664 901 53 . . . is Euler’s constant.
The first part of fρ(x) is antisymmetric about π/2 so the odd derivatives at the upper

limit arise entirely from the −1/x term and is independent of ρ. Hence for j odd
f

(j)
ρ (π/2) = (−1)j+1j !(2/π)j+1 and the correction to the integral from the upper limit is

UN(ρ) = 1

N
f

(π

2

)
+

2

N

m∑
i=1

B2ih
2i−1

(2i)!
f (2i−1)

ρ

(π

2

)
= −2

πN
+

2

π

m∑
i=1

4iB2i

2iN2i
, (27)

which, as m → ∞, cancels the terms of the inverse powers of N in SN .
At the lower limit we have fρ(0) = 0 and

LN(ρ) = − 2

π

m∑
i=1

B2i

(2i)!

( π

N

)2i
f (2i−1)

ρ (0). (28)

Using Bernoulli numbers B2 = 1/6, B4 = −1/30, B6 = 1/42 ([9] equation (5.8.8)), the
leading terms in LN are

LN(ρ) = 2

π

[
− π2

12N2
f (1)

ρ (0) +
π4

720N4
f (3)

ρ (0) − π6

30240N6
f (5)

ρ (0) + O

(
1

N8

)]
(29)

with

f (1)
ρ (0) = 1

6 (−5 + 3ρ),

f (3)
ρ (0) = 1

60 (67 − 210ρ − 45ρ2),

f (5)
ρ (0) = 1

126 (−95 + 3843ρ + 2835ρ2 + 945ρ3).

(30)

Combining (24)–(27), we obtain the result

S
(1)
N (ρ) = I (ρ) +

2

π

[
log

N

2
+ γ

]
+ LN(ρ). (31)

5. Evaluation of Δq, M , N (ρ)

We now evaluate �M,N(ρ) given by the summation (19) with �q,M,N(ρ) given by (20).

6
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For large M,N with M/N = λ fixed, we use

sinh−1(
√

ρ sin x) = √
ρx

[
1 − 1 + ρ

6
x2 +

(1 + ρ)(1 + 9ρ)

120
x4 + · · ·

]
(32)

and (10) to obtain

πy∗ = (πq̃)

[
1 − 1 + ρ

6

(qπ

N

)2
+

(1 + ρ)(1 + 9ρ)

120

(qπ

N

)4
+ · · ·

]
, (33)

where q̃ = λ
√

ρq. This leads to

tanh(πy∗) = tanh(πq̃) − 1 + ρ

6
(πq̃) sech2(πq̃)

(
πq

N

)2

+

[
πq̃

120
(1 + ρ)(1 + 9ρ)

− (πq̃)2

36
(1 + ρ)2 tanh(πq̃)

]
sech2(πq̃)

(
πq

N

)4

+ · · · . (34)

Substituting (34) into (20), we obtain

�q,M,N(ρ) = Dq,N(ρ)[tanh(πq̃) − 1] + Dq,N(ρ) × (πq̃)

{
−1 + ρ

6
sech2(πq̃)

(
πq

N

)2

+ (1 + ρ)sech2(πq̃)

[
1 + 9ρ

120
− 1 + ρ

36
(πq̃) tanh(πq̃)

](
πq

N

)4

+ · · ·
}
. (35)

Rewrite Dq,N(ρ) given by (16) as

Dq,N(ρ) = 2

qπ
+

2

N
fρ

(
πq

N

)

= 1

qπ

[
2 + 2f (1)

ρ (0)
(qπ

N

)2
+

1

3
f (3)

ρ (0)
(qπ

N

)4
+ · · ·

]
, (36)

where the derivatives are given in (30). This leads to the desired asymptotic expansion

�q,M,N(ρ) =
∞∑
i=0

�q,2i(λ, ρ)

N2i
(37)

with expansion coefficients

�q,0(λ, ρ) = 2

πq
[tanh(πq̃) − 1],

�q,2(λ, ρ) = 2πqf (1)
ρ (0)[tanh(πq̃) − 1] − λ

√
ρ(πq)2

3
(1 + ρ)sech2(πq̃),

�q,4(λ, ρ) = (πq)3f (3)
ρ (0)

3
[tanh(πq̃) − 1]

+ λ
√

ρ(πq)4(1 + ρ)

[
53 − 3ρ

180
− (1 + ρ)

18
(πq̃) tanh(πq̃)

]
sech2(πq̃).

(38)

As remarked earlier, values of these coefficients decrease exponentially as q increases.

7
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Table 1. The coefficients �q,2i(1, 1) in (43).

q 2�q,0 2�q,2 2�q,4

1 −0.004 746 746 975 499 7281 −0.082 316 316 898 659 221 0.038 515 515 969 807 909
2 −4.440 206 206 434 262810−6 −0.000 675 675 475 810 569 74 −0.032 940 940 383 097 552
3 −5.527 907 907 846 738 310−9 −2.921 521 521 929 085 010−6 −0.000 609 609 399 827 443 05
4 −7.742 287 287 885 427 210−12 −9.835 001 001 654 764 310−9 −5.326 415 415 423 713 010−6

5 −1.156 662 662 112 178 110−14 −2.893 517 517 142 470 410−11 −3.209 829 829 373 991 210−8

�q −0.004 750 750 717 870 1073 −0.082 995 995 760 387 631 0.004 959 959 517 708 477

6. Results

6.1. Summary of asymptotic expansions

Results obtained so far may be summarized as follows: the resistance RM×N(r, s) is given by
(3), with RM×N(ρ) expanded as

RM×N(ρ) = 2

π
log N +

√
ρ

(
M

N
− 1

2

)
+

1

π

[
2γ − 1 + 2 log

(
2

π

)

− log(1 + ρ) +
ρ − 1√

ρ
tan−1 √

ρ

]
+ LN(ρ) +

N/2∑
q=1

�q,M,N(ρ), (39)

where γ = 0.577 215 664 901 53 . . . is Euler’s constant, LN(ρ) is given by (28) and �q,M,N(ρ)

is given by (37).
As N → ∞ with λ = M/N fixed, (39) can be written as

RM×N(ρ) = 2

π
log N + C(λ, ρ) +

∞∑
i=1

b2i(λ, ρ)

N2i
, (40)

where

C(λ, ρ) = √
ρ

(
λ − 1

2

)
+

1

π

[
2γ − 1 + 2 log

(
2

π

)

− log(1 + ρ) +
ρ − 1√

ρ
tan−1 √

ρ

]
+

∞∑
q=1

�q,0(λ, ρ),

b2i(λ, ρ) = −
(

2B2iπ
2i−1

(2i)!

)
f (2i−1)

ρ (0) +
∞∑

q=1

�q,2i(λ, ρ).

(41)

Here, the Bernoulli numbers are B2 = 1/6, B4 = −1/30, B6 = 1/42 ([9] equation (5.8.8)).
The function fρ(x) is defined by (23) and its first few derivatives are given in (30).
Equation (37) gives an expansion of �q,M,N(ρ) in inverse powers of N2 correct to O(1/N4),
and the coefficients decay exponentially with q so that accurate results may be obtained using
only the first few terms of the sum. This is illustrated in table 1 in the case λ = ρ = 1.

6.2. The case M = N, r = s = 1

For an N × N network with r = s = 1 we have λ = ρ = 1. From (3) and (40) we obtain

RN×N(1, 1) = 2RN×N(1)

= 4

π
log N + c0 +

c2

N2
+

c4

N4
+ O

(
1

N6

)
, (42)

8
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where

c0 = 2C(1, 1) + 2
∞∑

q=1

�q,0(1, 1)

= 1 +
2

π

[
2γ − 1 + log

(
2

π2

)]
+

4

π

∞∑
q=1

(
tanh(πq) − 1

q

)

= (0.082 069 879 627 328 . . .) − (0.004 750 985 717 870 0465 . . .)

= 0.077 318 893 909 458 . . . ,

c2 = −2πB2f
(1)
1 (0) + 2

∞∑
q=1

�q,2(1, 1)

= 0.266 070 441 638 478 . . . ,

c4 = −π3B4

6
f

(3)
1 0) + 2

∞∑
q=1

�q,4(1, 1)

= −0.534 779 473 843 066 . . . ,

(43)

where we have used the data in table 1. This reproduces numerical values of the coefficient c0

determined from a differential approximant analysis [6] of the first 29 values of RN×N(1, 1)

together with a Neville table analysis [7]. Note that the correction to the dominant contribution
in c0 is not negligible. We have further extended the Neville table analysis of [7] to the next
two coefficients, and obtained results in agreement with the theoretical values of c2 and c4.

Finally, the asymptotic expansion (42) is to be compared to that of the resistance between
nodes (0, 0) and (N − 1, N − 1) in an infinite square lattice [4],

RN×N,∞(1, 1) = 1

π
[log N + γ + 2 log 2] + · · · . (44)
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Appendix

In this appendix we evaluate Sq,M,N(ρ) given by the summation (8) using the Euler–Maclaurin
sum formula ([9] equation (5.8.18))
r−1∑
k=0

gk+ 1
2

= 1

h

∫ xr

x0

g(x) dx

−
m∑

i=1

(1 − 21−2i)B2ih
2i−1

(2i)!
[g(2i−1)(xr) − g(2i−1)(x0)] + Em(ξm), (A.1)

where g(x) is such that gi = g(x0 + ih), the integer r is finite, and

Em(ξm) = −r
(1 − 2−1−2m)B2m+2h

2m+2

(2m + 2)!
g(2m+2)(ξm), x0 < ξm < xr,

where B2m are Bernoulli numbers.
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Using (A.1) with x0 = 0, xr = π/2, h = π/M, r = M/2,

g(x) = 1

ρ sin2 Aq + sin2 x
(A.2)

and noting that the odd derivatives vanish at the endpoints, we obtain

Sq,M,N(ρ) = 1

π

∫ π/2

0
g(x) dx + Em(q,M,N, ξm)

= 1

2
√

ρ sin Aq

√
1 + ρ sin2 Aq

+ Em(q,M,N, ξm). (A.3)

The comparison of (A.3) with (14) indicates that the dominant contribution of Sq,M,N(ρ) is
precisely (14) with tanh(πy∗) replaced by 1, a result we quoted earlier. It also identifies the
error term to be

Em(q,M,N, ξm) = tanh(πy∗) − 1

2
√

ρ sin Aq

√
1 + ρ sin2 Aq

, (A.4)

a result which cannot be deduced from the Euler–Maclaurin formula. We point out that since
the denominator of (A.2) can be very small for q and x small, Em(q,M,N, ξm) does not
necessarily vanish even in the limit of m → ∞.

Note added in proof. Equation (9) may also be derived from equation (A.3) of [10]. We thank Professor R Kenna
for drawing our attention to this reference.
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